93 research outputs found

    A two-electrode 2.88nJ/conversion biopotential acquisition system for portable healthcare device

    Full text link
    A 2.88nJ/Conversion low energy biopotential acquisition system is designed for portable healthcare device. Two dry copper contact electrodes with 1.2-cm diameter are used to easily interface between skin and healthcare device. Chopping technique is adopted at readout front end to obtain thermal noise floor of 1.3uVrms over 0.5~200Hz and CMRR over 100dB to mitigate common-mode body potential induced from AC power line. A 4-stage gain control and band selection blocks are integrated to digitally calibrate for different types of biomedical signal and an 8-bit synchronous successive approximation register (SAR) A/D is used to digitize sensed biopotentials. A test chip is implemented in 0.18um, 1.8V supply CMOS technology and successively verified by readout ECG signal with two electrodes contact at chest of body with separating 6cm. I

    A 23ฮผW Solar-Powered Keyword-Spotting ASIC with Ring-Oscillator-Based Time-Domain Feature Extraction

    Full text link
    Voice-controlled interfaces on acoustic Internet-of-Things (IoT) sensor nodes and mobile devices require integrated low-power always-on wake-up functions such as Voice Activity Detection (VAD) and Keyword Spotting (KWS) to ensure longer battery life. Most VAD and KWS ICs focused on reducing the power of the feature extractor (FEx) as it is the most power-hungry building block. A serial Fast Fourier Transform (FFT)-based KWS chip [1] achieved 510nW; however, it suffered from a high 64ms latency and was limited to detection of only 1-to-4 keywords (2-to-5 classes). Although the analog FEx [2]โ€“[3] for VAD/KWS reported 0.2ฮผW-to-1 ฮผW and 10ms-to-100ms latency, neither demonstrated >5 classes in keyword detection. In addition, their voltage-domain implementations cannot benefit from process scaling because the low supply voltage reduces signal swing; and the degradation of intrinsic gain forces transistors to have larger lengths and poor linearity

    ECG Signal Compression and Classification Algorithm With Quad Level Vector for ECG Holter System

    Full text link

    Molecular diagnosis of hereditary spherocytosis by multi-gene target sequencing in Korea: matching with osmotic fragility test and presence of spherocyte

    Get PDF
    Background Current diagnostic tests for hereditary spherocytosis (HS) focus on the detection of hemolysis or indirectly assessing defects of membrane protein, whereas direct methods to detect protein defects are complicated and difficult to implement. In the present study, we investigated the patterns of genetic variation associated with HS among patients clinically diagnosed with HS. Methods Multi-gene targeted sequencing of 43 genes (17 RBC membrane protein-encoding genes, 20 RBC enzyme-encoding genes, and six additional genes for the differential diagnosis) was performed using the Illumina HiSeq platform. Results Among 59 patients with HS, 50 (84.7%) had one or more significant variants in a RBC membrane protein-encoding genes. A total of 54 significant variants including 46 novel mutations were detected in six RBC membrane protein-encoding genes, with the highest number of variants found in SPTB (nโ€‰=โ€‰28), and followed by ANK1 (nโ€‰=โ€‰19), SLC4A1 (nโ€‰=โ€‰3), SPTA1 (nโ€‰=โ€‰2), EPB41 (nโ€‰=โ€‰1), and EPB42 (nโ€‰=โ€‰1). Concurrent mutations of genes encoding RBC enzymes (ALDOB, GAPDH, and GSR) were detected in three patients. UGT1A1 mutations were present in 24 patients (40.7%). Positive rate of osmotic fragility test was 86.8% among patients harboring HS-related gene mutations. Conclusions This constitutes the first large-scaled genetic study of Korean patients with HS. We demonstrated that multi-gene target sequencing is sensitive and feasible that can be used as a powerful tool for diagnosing HS. Considering the discrepancies of clinical and molecular diagnoses of HS, our findings suggest that molecular genetic analysis is required for accurate diagnosis of HS.Support was provided by: the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2017R1A2A1A17069780) http://www.nrf.re.kr/

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • โ€ฆ
    corecore